ON THE APPROXIMATE REPLACEMENT OF SYSTEMS WITH ILAG BY ORDINARY DYNAMICAL SYSIEMS

PMM Vol.29, N2, 1965, pp.226-235
Iu.M.REPIN
(Sverdlovsk)
(Received November 19, 1964)

Abstract

Considered is the question of the approximate replacement of a system of differential equations with a lag argument by a system of ordinary differential equations. The estimates obtained in this work show that such a replacement can be realized, with any degree of accuracy, if one makes the order of the system of ordinary differential equations high enough. Some theorems on the stability of the trivial solutions of the considered systems are established.

1. Approximation of the las olemant by a oystem of ordinary differential -quations. We shall describe the state of the lag element [1] at any instant t by a function $x_{t}(0)$ defined on the interval $[-\tau, 0]$, where $\tau>0$ is the constant delay time. The state of the element will be determined at any instanc $t\left(t_{0} \leqslant t \leqslant t_{1}\right)$ if one gives its initial state $x_{i_{0}}(\sigma)$ and the input function $x(t)$ for $t_{0}<t \leqslant t_{1}$. In this case $x_{t}(\sigma)=x(t+\sigma)$, whereby, here and in the sequel, the function $x(t)$ will be assumed to have been continued over the interva」 $\left[t_{0}-\tau, i_{0}\right]$ by means of the function $x_{i_{0}}(\sigma)$, in such a way that $x(t)=x_{i_{0}}\left(t-i_{0}\right)$ when $i_{0}-\tau \leqslant t \leqslant t_{0}$.

The output function $y(t)$ or the lag element is defined as $x_{t}(-\tau)$, and, hence, can be obtained from the continued input function by the equation $y(t)=x(t-\tau)$. We note that even though the values of $x(t)$ on the interval ($t_{1}-\tau, t_{1}$] do not influence the output function ($t \leqslant t_{1}$), nevertheless these values are needed for the determination of the state of tine lag element when $t_{1}-\tau<t \leqslant t_{1}$.

In what follows, the continued input function $x(t)$ will be assumed to be continuous on the interval $\left[t_{0}-\tau, t_{1}\right]$.

Along with the lag element, let us consider an aperiodic link which is described by the equation $\tau z^{\circ}+z=x(t)$, where the time constant τ coincides with the delay time of the lag element, while $x(t)$ is the input function of the lag element when $t \geqslant \boldsymbol{t}_{\mathbf{0}}$.

In order to determine some correspondence between the initial states of the lag element and the aperiodic link, we set

$$
z\left(t_{0}\right)=x_{t_{0}}(-\tau)=y\left(t_{0}\right)
$$

Let us try to evaluate the difference $\epsilon(t)=z(t)-y(t)$ between the output functions of the aperiodic link and of the lag element. We note that $\epsilon\left(t_{0}\right)=0$. Let us suppose that when $t_{0}-\tau \leqslant t \leqslant t_{1}$, the function $x(t)$ has a continuous derivative. Then

$$
\begin{gathered}
\varepsilon^{\cdot}(t)=z^{*}(t)-y^{\bullet}(t)=\tau^{-1}[x(t)-z(t)]-x^{*}(t-\tau)=-\tau^{-1} \varepsilon(t)+\varphi(t) \\
\varphi(t)=\tau^{-1}[x(t)-x(t-\tau)]-x^{*}(t-\tau)
\end{gathered}
$$

If $x^{*}(t)$ satisfies a Lipschitz condition with a constant K_{a}, then $|\varphi(t)| \leqslant K_{2} \tau$. If, however, $x^{\bullet}(t)$ exists, and if $\left|x^{\bullet \bullet}(t)\right| \leqslant M_{2}$, then $|\varphi(t)| \leqslant 1 / 2 M_{2} \tau$. It is not difficult to see that $|\varepsilon(t)| \leqslant K_{2} \tau^{2}$ in the first case, while $|\varepsilon(t)| \leqslant 1 / 2 M_{2} \tau^{2}$ in the second case.

Let us consider a chain of m lag elements [2], with a constant delay time τ / m, which are siccessively connected (i.e they are connected so that the input function of each element is the output function of the immediately preceding element). We shall construct the initial states of the chain elements from the initial state of the above considered lag element by means of the rule

$$
\begin{equation*}
x_{j t_{0}}(\rho)=x_{l_{0}}\left(\rho-\frac{(l-1) \tau}{m}\right) \quad\left(-\frac{\tau}{m} \leqslant \rho \leqslant 0 ; j=1, \ldots, m\right) \tag{1.1}
\end{equation*}
$$

If one takes for the input function $x(t)$ of the first element of the chain the input function of the lag element considered above, then the relation (1.1) will be fulfilled at any instant t, and the output functions of the chain elements will be determined by Equations

$$
\begin{align*}
& y_{1}(t)=x(t-\tau / m) \\
& y_{2}(t)=y_{1}(t-\tau / m)=x(t-2 \tau / m) \tag{1.2}\\
& \cdots \cdots \cdots \cdots \cdots \cdots \\
& y_{m}(t)=y_{m-1}(t-\tau / m)=x(t-\tau)=y(t)
\end{align*}
$$

Here $x(t)$ is the continued input function of the lag element; $y(t)$ is its output function. Let us construct the chain of successively connected aperiodic links described by a system of ordinary differential equations with the ipitial conditions

$$
\begin{gather*}
\tau m^{-1} z_{1}^{\cdot}+z_{1}=x(t), \quad z_{1}\left(t_{0}\right)=y_{1}\left(t_{0}\right)=x\left(t_{0}-\tau / m\right)=x_{1 t_{0}}(-\tau / m) \\
\tau m^{-1} z_{2}^{\cdot}+z_{2}=z_{1}(t), \quad z_{2}\left(t_{0}\right)=y_{2}\left(t_{0}\right)=x\left(t_{0}-2 \tau / m\right)=x_{2 t_{0}}(-\tau / m) \tag{1.3}
\end{gather*}
$$

$\tau m^{-1} z_{m}+z_{m}=z_{m-1}(t), \quad z_{m}\left(t_{0}\right)=y_{m}\left(t_{0}\right)=x\left(t_{0}-\tau\right)=x_{m t_{0}}(-\tau / m)$
The evaluation of the differences $\varepsilon_{j}(t)=z_{j}(t)-y_{j}(t)(j=1, \ldots, m)$, and also certain properties of the system (1.3) will be given below.

By the estimate derived earlier, we have $\left|\varepsilon_{1}(t)\right| \leqslant A(\tau / m)^{\text {m }}$; where A coincides with K_{2} or with $M_{2} / 2$, depending on the hypotheses relative to $x(t)$. The input of the second lag element is $y_{1}(t)$, while the input of
the second aperiodic link is $z_{1}(t)=y_{1}(t)+\varepsilon_{1}(t)$. The function $z_{2}(t)$ can be represented in the form of the $\operatorname{sum} z_{2}{ }^{(1)}(t)+z_{2}{ }^{(2)}(t)$, where $z_{2}{ }^{(1)}$ (t) and $z_{2}{ }^{(2)}(t)$ are solutions of the problems

$$
\begin{aligned}
& (\tau / m) z_{2}^{(1)^{\circ}}+z_{2}^{(1)}=y_{1}(t), z_{2}^{(1)}\left(t_{0}\right)=y_{2}\left(t_{0}\right) \\
& (\tau / m) z_{2}^{(2)^{\cdot}}+z_{2}^{(2)}=\varepsilon_{1}(t), \quad z_{2}^{(2)}\left(t_{0}\right)=0
\end{aligned}
$$

Now, we obtain easily

$$
\begin{aligned}
&\left|\varepsilon_{2}(t)\right|=\left|z_{2}(t)-y_{2}(t)\right| \leqslant\left|z_{2}^{(1)}(t)-y_{2}(t)\right|+\left|z_{2}^{(2)}(t)\right| \leqslant \\
& \leqslant A(\tau / m)^{2}+A(\tau / m)^{2}=2 A(\tau / m)^{2}
\end{aligned}
$$

Continuing in the same manner, we get

$$
\left|\varepsilon_{j}(t)\right| \leqslant j A(\tau / m)^{2}
$$

By replacing f on the right-hand side of the inequality by its largest value, we obtain

$$
\begin{equation*}
\left|\varepsilon_{j}(t)\right| \leqslant A m^{-1} \tau^{2} \quad(j=1, \ldots, m) \tag{1.4}
\end{equation*}
$$

From this it follows that $\boldsymbol{z}_{\mathrm{a}}(t) \rightarrow y(t)$ uniformiy on the interval $\left[t_{0}, t_{1}\right]$ as $m \rightarrow \infty$.

We note the following property of the system (1.3): if $\left|z_{j}\left(t_{0}\right)\right| \leqslant \mathrm{e}(j=1, \ldots, m)$ and if $\mid x(t)!\leqslant \varepsilon$ wher $t_{0} \leqslant t \leqslant t_{1}$, then $\left|z_{j}(t)\right| \leqslant \varepsilon$ when $t_{0} \leqslant t \leqslant t_{1}(j=1, \ldots, m)$.

Let us weaken the requirements on $x(t)$ by assuming that it satisfies the Lipschitz condition with a constant K_{1} (or that it may have a first derivative bounded by a constant M_{1}). We consider the smoothed input function

$$
x^{(1)}(t)=\frac{1}{h} \int_{i}^{t+h} x(\xi) d \xi \quad\left(t_{0}-\tau \leqslant t \leqslant t_{1}\right)
$$

(the function $x(t)$ on the interval $\left[t_{1}, t_{1}+h\right]$ is continued so as to be continuous and constant).

Its first derivative $x^{(1) \cdot}=[x(t+h)-x(t)] / h$ satisfies the Lipschitz condition with the constant $2 K_{1} / h$ (or else it has a derivative bounded by the constant $2 M_{1} / h$).

Let us evaluate the function $x^{(2)}(t)=x(t)-x^{(1)}(t)$. If $x(t)$ satisfies the Lipschitz condition, then

$$
\left|x^{(2)}(t)\right|=\left|x(t)-\frac{1}{h} \int_{i}^{t \cdot h} x(\xi) d \xi\right|=|x(t)-x(\theta)| \quad(t \leqslant \theta \leqslant t+h)
$$

Thus, in this case $\left|x^{(2)}(t)\right| \leqslant K_{1} h$.
If $x(t)$ has a bounded first derivative, then

$$
\left|x^{(\xi)}(t)\right|=\left|x(t)-\frac{1}{h} \int_{i}^{t+h}\left[x(t)+(\xi-t) x^{-}(\theta(\xi))\right] d \xi\right| \leqslant \frac{1}{h} \int_{i}^{t+h}(\xi-t) M_{1} d \xi=\frac{M_{1} h}{2}
$$

Because of the linearity of the systems (1.2) and (1.3), their output functions $y(t)$ and $s(t)$ which corresponds to the continued input function $x(t)=x^{(1)}(t)+x^{(2)}(t)$, will be sums of the output functions of these systems and will correspond to the continued functions $x^{(1)}(t)$ and $x^{(2)}(t)$.

Hence,

$$
\begin{gathered}
\left|z_{m}(t)-y(t)\right|=\left|z_{m}^{(1)}(t)+z_{m}^{(2)}(t)-y^{(1)}(t)-y^{(2)}(t)\right| \leqslant \\
\leqslant\left|z_{m}^{(1)}(t)-y^{(1)}(t)\right|+\left|z_{m}^{(2)}(t)\right|+\left|y^{(2)}(t)\right|
\end{gathered}
$$

It is obvious that $\left|y^{(2)}(t)\right|=\left|x^{(2)}(t-\tau)\right| \leqslant K_{1} h \quad$ (or $M_{1} h / 2$, respectively). The same inequality holds for $\left|z_{m}^{(2)}(t)\right|$ because of the mentioned property of the chain of the innks. For an estimate of the quantity $\left|z_{m}{ }^{(1)}(t)-y^{(1)}(t)\right|$ one can use the inequality (1.4) because $x^{(1)}(t)$ is a sufficientiy smooth
function. Hence,

$$
\left|z_{m}(t)-y(t)\right| \leqslant 2 K_{1} \tau^{2} / h m \neq 2 K_{1} h \quad \text { (correspondingly, } M_{1} \tau^{2} / h m \nleftarrow M_{1} h \text {) }
$$

If we set $h=\tau \sqrt{ } m$, then we obtain the following result.
Theorem 1.1. If the continued input function is the same for the lag element and for the corresonding chain of the m aperiodic links and if it satisfies the Lipschitz condition with the constant K_{1} (or has a first derivative bounded by M_{1}) then the output function of the lag element and of the chain of aperiodic links satisfies the inequality

$$
\begin{equation*}
\left|z_{m}(t)-y(t)\right| \leqslant 4 K_{1} \tau / \sqrt{m} \quad \text { or } 2 M_{1} \tau / \sqrt{m} \tag{1.5}
\end{equation*}
$$

Note l.1. Obviously, the following inequalities are true:

$$
\begin{equation*}
\left|z_{j}(t)-y_{j}(t)\right|_{j} \leqslant 4 K_{1} \tau / \sqrt{m} \quad\left(\text { or } \quad 2 M_{1} \tau / \sqrt{m}\right) \quad(j=1, \ldots, m-1) \tag{1.6}
\end{equation*}
$$

Nof e 1.2 . It is equally easy to prove the convergence of $z_{i}(t)$ to $y(t)$ as $m \rightarrow \infty$ for an input function $x(t)$ which fulfills only the requirement of continuity.
2. Approximation of a cytom with a las argunont by means of an ordinary nytom of differential equations. Let us consider a system of differential equations with one constant lag

$$
\begin{gathered}
d x_{i} / d t=X_{i}\left(t, x_{1}(t), \ldots, x_{n}(t), x_{1}(t-\tau), \ldots, x_{n}(t-\tau)\right) \\
(i=1, \ldots, n)
\end{gathered}
$$

For the sake of brevity, we shall write the last equation in the vector form

$$
\begin{equation*}
d x / d t=X(t, x, x(t-\tau)) \tag{2.1}
\end{equation*}
$$

Let functions $X_{1}(t, x, y)$ be defined and continuous in all arguments such that

$$
\left|x_{1}\right|+\ldots+\left|x_{n}\right|<I I,\left|y_{1}\right|+\ldots+\left|y_{n}\right|<H \quad \text { for } t \geqslant A
$$

Furthermore, it is assumed that $X_{i}(t, 0,0) \equiv 0$ and that the functions $X_{1}(t, x, y)$ satisfy a Lipschitz condition in the argument x, y (uniformly with respect to t)

$$
\begin{gather*}
\left|X_{i}(t, x, y)-X_{i}\left(t, x^{\circ}, y^{\circ}\right)\right| \leqslant L_{1} \sum_{k=1}^{n}\left|x_{k}-x_{k}^{0}\right|+ \\
+L_{2} \sum_{k=1}^{n}\left|y_{k}-y_{k}^{\circ}\right| \quad \text { for } t \geqslant A \tag{2.2}
\end{gather*}
$$

Replacing the system's lag elements by chains of m aperiodic links, we obtain an approximating system of ordinary differential equations of order $n(m+1)$

$$
\begin{gather*}
\frac{d z_{0}}{d t}=X\left(t, z_{0}, z_{m}\right), \quad z_{j}=\left(z_{1 j}, \ldots, z_{n j}\right) \tag{2.3}\\
\frac{d z_{1}}{d t}=\frac{m}{\tau}\left(z_{0}-z_{1}\right), \ldots, \frac{d z_{m}}{d t}=\frac{m}{\tau}\left(z_{m-1}-z_{m}\right) \quad(j=0,1, \ldots, m)
\end{gather*}
$$

Let us establish some properties of the solutions of the system (2.3) which are analogous to the properties of the solutions of the system (2.1). It is not difficult to establish [3] that the possible rate of increase of the solutions of the system (2.1) is determined by the constants of the

Lipschitz condition of the functions $X_{1}(t, x, y)$. We note that this remains true uniformly with respect to m also for the system (2.3) in spite of the fact that the Lipschitz constants of the remaining right-hand side parts of (2.3) (for $1=1, \ldots, m$) increase with m as m / τ.

Suppose that the initial conditions for the system (2.3) satisfy the Inequallties

Furthermore, let

$$
\sum_{i=1}^{n}\left|z_{i j}^{0}\right|<\delta, \quad(j=0, \ldots, m)
$$

$$
M(t)=\max \left[\delta, \sum_{i=1}^{n} \mid z_{i_{0}}(\xi)!\right] \quad \text { for } t_{0} \leqslant \xi \leqslant t
$$

From the vector equation $d z_{1} / d t=m\left(z_{0}-z_{1}\right) / \tau$ we obtain

$$
z_{i 1}(t)=z_{i_{1}} \circ \exp -\frac{-m\left(t-t_{0}\right)}{\tau}+\frac{m}{\tau} \int_{i_{0}}^{t} z_{i_{0}}(\xi) \exp \frac{m(\xi-t)}{\tau} d \xi
$$

Hence,

$$
\begin{aligned}
& \sum_{i=1}^{n}\left|z_{i_{1}}(t)\right| \leqslant \delta \exp \frac{-m\left(t-t_{0}\right)}{\tau}+\frac{m}{\tau} \int_{i_{0}}^{t} M(\xi) \exp \frac{m(\xi-t)}{\tau} d \xi \leqslant \\
& \quad \leqslant M(t)\left[\exp \frac{-m\left(t-t_{0}\right)}{\tau}+\frac{m}{\tau} \int_{i_{0}}^{t} \exp \frac{m(\xi-t)}{\tau} d \xi\right]=M(t)
\end{aligned}
$$

Continuing in this manner, we get

$$
\sum_{i=1}^{n}\left|z_{i 2}(t)\right| \leqslant M(t), \ldots \quad \sum_{i=1}^{n}\left|z_{i m}(t)\right| \leqslant M(t)
$$

In view of the first equation of (2.3) we have

$$
z_{i_{0}}(t)=z_{i 0}^{0}+\int_{i_{0}}^{t} X_{i}\left(\xi, z_{0}(\xi), z_{m}(\xi)\right) d \xi \quad(i=1, \ldots, n)
$$

Therefore,

$$
\begin{gathered}
\sum_{i=1}^{n}\left|z_{i 0}(t)\right| \leqslant \sum_{i=1}^{n}\left|z_{i_{0}}{ }^{\circ}\right|+\int_{i_{0}}^{t} \sum_{i=1}^{n}\left|X_{i}\left(\xi, z_{0}(\xi), z_{m}(\xi)\right)\right| d \xi \leqslant \\
\leqslant \delta+n \int_{i_{0}}^{t}\left[L_{1} \sum_{k=1}^{n}\left|z_{k 0}(\xi)\right|+L_{2} \sum_{k=1}^{n}\left|z_{k m}(\xi)\right|\right] d \xi \leqslant \delta+n\left(L_{1}+L_{2}\right) \int_{t_{0}}^{t} M(\xi) d \xi
\end{gathered}
$$

From this, one can easily [3] obtain the inequality

$$
\begin{equation*}
\sum_{i=1}^{n}\left|z_{i j}(t)\right| \leqslant M(t) \leqslant \delta \exp \left[n\left(L_{1}+L_{2}\right)\left(t-t_{0}\right)\right] \quad(j=0, \ldots, m) \tag{2.4}
\end{equation*}
$$

For the solution of the system (2.1), the following property holds: if a certain set of initial functions and their corresponding solutions $x_{1}(t)$ ($t=1, \ldots, n$) are bounded by some number δ when $t_{0}-\tau \leqslant t \leqslant t_{0}+\tau$, then the set $x_{1}(t)$ is bounded by the number $A \delta$ (where A is some constant) when $t_{0} \leqslant t \leqslant t_{0}+\tau$

An analogous property holds uniformly in m also for the system (2.3), where the role of the derivatives is played by the divided differences

$$
\frac{z_{i, j-1}-z_{i j}}{\tau / m}(i=1, \ldots, n ; j=1, \ldots, m)
$$

evaluated for $t=t_{0}+(1+\beta) \tau(\beta>0)$
Ineed, let

$$
\sum_{i=1}^{n}\left|z_{i j}(t)\right| \leqslant \delta \quad \text { for } t_{0} \leqslant t \leqslant t_{0}+(i+\beta) \tau \quad(j=0,1, \ldots, m)
$$

Because of the system (2.3), the following equations are true:

$$
\frac{z_{i, j-1}-z_{i j}}{\tau / m}=z_{i j} \quad(i=1, \ldots, n ; j=1, \ldots, m)
$$

Let, us express $z_{i j}(i=1, \ldots, n ; i=1, \ldots, m)$ in the form of the sum $z_{i}(1)+z_{i j}^{(9)}$ where $z_{i j}(1)$ and $i_{i j}^{(2)}$ satisfy the systems of equations with the

$$
\begin{array}{ll}
\frac{\tau}{m} z_{i 2}^{(1)} \downarrow z_{i 1}^{(1)}=z_{i 0}, z_{i 1}^{(1)}\left(t_{0}\right)=z_{i 0}^{0} ; & \frac{\tau}{m} z_{i 1}^{(2)}+z_{i 1}^{(1)}=0, \quad z_{i 1}^{(2)}\left(t_{0}\right)=z_{i 1}^{0}-z_{i 0}^{0} \tag{2.5}\\
\frac{\tau}{m} z_{i 2}^{(1)}+z_{i 2}^{(1)}=z_{i 1}^{(1)}, z_{i}^{(1)}\left(t_{0}\right)=z_{i 0}^{0} & \frac{\tau}{m} z_{i 2}^{(2)}+z_{i 2}^{(2)}=z_{i 1}^{(3)}, z_{i 2}^{(2)}\left(t_{0}\right)=z_{i 2}^{0}-z_{i 0}^{0}
\end{array}
$$

$$
\frac{\tau}{m} z_{i m}^{\cdot(1)}+z_{i m}^{(1)}=z_{i, m-1}^{(1)}, z_{i m}^{(1)}\left(t_{0}\right)=z_{i 0}^{0} ; \frac{\tau}{m} z_{i m}^{\prime(2)}+z_{i m}^{(2)}=z_{i m-1}^{(2)} \cdot z_{i m}^{(z)}\left(t_{0}\right)=z_{i m}^{(0)}-z_{i 0}^{0}
$$

Let us introduce the notation $z_{i j}^{*(1)}=u_{i j} z_{i j}^{*(2)}=v_{i j}$. Then $u_{i j}$ and $v_{i j}$ will satisfy the systems of equations with the inftial conditions

$$
\begin{array}{llll}
\frac{\tau}{m} u_{i 1}+u_{i 1}=z_{i 0}, & u_{i 1}\left(t_{0}\right)=0 ; & \frac{\tau}{m} v_{i 1}^{*}+v_{i 1}=0, & v_{i 1}\left(t_{0}\right)=\frac{z_{i 0}^{\circ}-z_{i 1}^{\circ}}{\tau / m} \tag{2.6}\\
\frac{\tau}{m} i_{2}+u_{i 2}=u_{i 1}, & u_{i 2}\left(t_{0}\right)=0 ; & \frac{\tau}{m} v_{i 1}^{\cdot}+v_{i 2}=v_{i 1}, & v_{i 2}\left(t_{0}\right)=\frac{z_{i 1}^{\circ}-z_{i 2}^{\circ}}{\tau / m}
\end{array}
$$

$\frac{\tau}{m} u_{i m}^{\cdot}+u_{i m}=u_{i, m}^{-1}, \quad u_{i m}\left(t_{0}\right)=0 ; \frac{\tau}{m} v_{i m}^{*}+v_{i m}=v_{i, m-1}, \quad v_{i m}\left(t_{0}\right)=\frac{z_{i, m-1}^{0}-z_{i m}^{0}}{\tau / m}$ Since $z_{i_{0}}^{\dot{0}}=X_{i}\left(t, z_{0}(t), z_{m}(t)\right)$, we get

$$
\left|z_{i 0}^{\circ}(t)\right| \leqslant\left(L_{1}+L_{2}\right) \delta \quad \text { for } \quad t_{0} \leqslant t \leqslant t_{0}+(1+\beta) \tau
$$

Because of the system (2.6) we lave
$\left|u_{i j}(t)\right| \leqslant\left(L_{1}+L_{3}\right) \delta \quad(i=1, \ldots, n, j=1, \ldots, m),\left(t_{0} \leqslant t \leqslant t_{0}+\tau(1+\beta)\right)$
From the system (2.6) we find
$v_{i j}(t)=\left(v_{i j}\left(t_{0}\right)+\frac{v_{i, j-1}\left(t_{0}\right) m\left(t-t_{0}\right)}{1!\tau}+\ldots+\frac{v_{i 1}\left(t_{0}\right)\left(m\left(t-t_{0}\right)\right)^{j-1}}{(j-1)!\tau^{j-1}}\right) \exp \frac{-m\left(t-t_{0}\right)}{\tau}$
Hence we obtain $(i=1, \ldots, n ; j=1, \ldots, n)$
$\left\lvert\, v_{i j}\left(t_{0}+\tau(1+\beta) \left\lvert\, \leqslant \frac{2 m \delta}{\tau}\left(1+m(1+\beta)+\ldots \nmid \frac{[m(1+\beta)]^{m-1}}{(m-1) \mid}\right) e^{-m(1+\beta)}\right.\right.\right.$
The expression $\left(1+m(1+\beta)+\ldots+[m(1+\beta)]^{m-1} /(m-1)!\right)$ can be estimated from above by the sum of an infinite decreasing geometric progression with first term $[m(1+\beta)]^{m-1} /(m-1)$! and denominator $1 /(1+\beta)$. Therefore,

$$
\left|v_{i j}\left(t_{0}+\tau(1+\beta)\right)\right| \leqslant \frac{2 \delta[m(1+\beta)]^{m}}{\beta \tau(m-1) \mid} e^{-m(1+\beta)}
$$

Using Stirling's formula, we obtain finaliy

$$
\begin{equation*}
\left|v_{i j}\left(t_{0}+\tau(1+\beta)\right)\right| \leqslant \frac{2 \delta \sqrt{m}}{\beta \tau \sqrt{2 \pi}}\left(\frac{1+\beta}{e^{\beta}}\right)^{m} \leqslant \delta C_{\beta} \quad\binom{i=1, \ldots, n}{i=1, \ldots, m} \tag{2.10}
\end{equation*}
$$

Combining (2.7) and (2.10) we obtain an inequality which holds uniformly in m

$$
\begin{equation*}
\left|\frac{z_{i, j-1}-z_{i j}}{\tau / m}\right| \leqslant \delta\left(C_{\beta}+L_{1}+L_{2}\right) \quad\binom{i=1, \ldots, n}{i=1, \ldots, m}, \quad t=t_{0}+(1+\beta) \tau \tag{2.11}
\end{equation*}
$$

Let us next consider the question of the nearness of the solution of the system (2.1) to that of (2.3), assuming that the initial conditionsin $z_{1}{ }^{\circ}$ of the system (2.3) are constructed from the initial conditions of the systemm (2.1) in the following way:

$$
\begin{equation*}
z_{i j}\left(t_{0}\right)=z_{i j}=x_{i}\left(t_{0}-j \tau / m\right) \quad(i=1, \ldots, n ; j=0, \ldots, m) \tag{2.12}
\end{equation*}
$$

Let us suppose that the functions $x_{i}(\xi)\left(t_{0}-\tau \leqslant \xi \leqslant t\right)$ satisfy the Lipschitz condition with the constant $K_{1}(t)$, the same for all functions $(t=1, \ldots, n)$.

Let $\quad N_{j}(t)=\max \sum_{i=1}^{n} \mid z_{i j}(\xi)-x_{i}(\xi-j \tau / m) \quad\left(t_{0} \leqslant \xi \leqslant t\right)$ Let us represent $z_{i j}(i=1, \ldots, n ; j=1, \ldots, m)$ in the form of the sum $z_{i j}^{(1)}+z_{i}(2)$ where $z_{i j}^{(1)}$ and $z_{i j}^{(2)}$ satisfy the systems of equations with the

$$
\begin{align*}
& (\tau / m) z_{i 1}{ }^{(1)}+z_{i 1}^{(1)}=x_{i}(t), \quad z_{i 1}^{(1)}\left(t_{0}\right)=z_{i 1}^{(0)}=x_{i}\left(t_{0}-\tau / m\right) \\
& (\tau / m) z_{i 2}{ }^{(1)}+z_{i 2}^{(1)}=z_{i 1}^{(1)}, \quad z_{i 2}^{(1)}\left(t_{0}\right)=z_{i 2}^{0}=x_{i}\left(t_{0}-2 \tau / m\right) \\
& (\tau / m) z_{i m}^{\cdot(1)}+z_{i m}^{(1)}=z_{i, m-1}^{(1)}, \quad z_{i m}^{(1)}\left(t_{0}\right)=z_{i m}^{\circ}=x_{i}\left(t_{0}-m \tau / m\right) \\
& (\tau / m) z_{i 1}^{(2)}+z_{i 1}^{(2)}=z_{i 0}(t)-x_{i}(t), \quad z_{i 1}^{(2)}\left(t_{0}\right)=0 \\
& (i / m) z_{i 2}^{{ }^{(2)}}+z_{i 2}^{(2)}=z_{i 2}^{(2)}, \quad z_{i 2}^{(2)}\left(t_{0}\right)=0 \tag{2.13}\\
& (\tau / m) z_{i m}^{\cdot(2)}+z_{i m}^{(2)}=z_{i, m-1}^{(2)}, \quad z_{i m}^{(2)}\left(t_{0}\right)=0 \tag{2.14}
\end{align*}
$$

From (2.13), (1.2), (1.5) and (1.6) it follows that
$z_{i j}^{(1)}(t)-x_{i}(t-j \tau / m)\left|\leqslant \frac{4 K_{1}(t) \tau}{\sqrt{m}}, \quad \sum_{i=1}^{n}\right| z_{i j}^{(2)}(t)\left|\leqslant N_{0}(t)\right| \quad\binom{i=1, \ldots, n}{j=1, \ldots, m}$
From (2.14) we obtain

$$
\begin{equation*}
N_{j}(t) \leqslant N_{0}(t)+\frac{4 n K_{1}(t) \tau}{\sqrt{m}} \quad(j=1, \ldots, m) \tag{2.15}
\end{equation*}
$$

In view of (2.1) and (2.3) we have for $x_{i}=x_{i}(t)$ and $x_{i 0}=x_{i 0}(t)$ the following equation

$$
\begin{gathered}
x_{i}=x_{i}\left(t_{0}\right) \downarrow \int_{t_{0}}^{t} X_{i}(\xi, x(\xi), x(\xi-\tau)) d \xi, z_{i 0}=x_{j}\left(t_{0}\right)+\int_{i_{0}}^{t} X_{i}\left(\xi, z_{0}(\xi), z_{m}(\xi)\right) d \xi \\
\sum_{i=1}^{n}\left|z_{i 0}(t)-x_{i}(t)\right| \leqslant n \int_{i_{0}}^{t}\left[L_{1} N_{0}(\xi)+L_{2} N_{m}(\xi)\right] d \xi \leqslant \\
\leqslant n \int_{i_{0}}^{t}\left[\left(L_{1}+L_{2}\right) N_{0}(\xi)+\frac{4 n K_{1}(\xi) L_{2} \tau}{\sqrt{m}}\right] d \xi
\end{gathered}
$$

and hence,

$$
\begin{equation*}
N_{0}(t) \leqslant n \int_{i_{0}}^{t}\left[\left(L_{1}+L_{2}\right) N_{0}(\xi)+\frac{4 n K_{1}(\xi) L_{2} \tau}{m^{1 / 2}}\right] d \xi \tag{2.16}
\end{equation*}
$$

3. Preservation of stability in the passage to the approximating system

 and baok. Let us examine the systems (2.1) and (2.3).Theorem 3.1. Suppose that the trivial solution of the system (2.1) is uniformly asymptotically stable, and that there exist constants $\alpha>0, B \geqslant 1$ such that for all sufficiently small δ the inequality

$$
\left|x_{1}(t)\right|+\ldots+\left|x_{n}(t)\right| \leqslant \delta\left(t_{0}-\tau \leqslant t \leqslant t_{0}\right)
$$

implies the inequality

$$
\begin{equation*}
\left|x_{1}(t)\right|+\ldots+\left|x_{n}(t)\right| \leqslant B \delta e^{-\alpha\left(t-t_{0}\right)} \quad\left(t \geqslant t_{0}\right) \tag{3.1}
\end{equation*}
$$

Then for m large enough, the trivial solution of the system (2.3) is uniformly asymptotically stable.

Proof. Let us assume that the initial data for the system (2.3) satisfy the conditions

$$
\begin{equation*}
\sum_{i=1}^{n}\left|z_{i j}^{0}\right| \leqslant \delta \quad(j=0, \ldots, m) \quad\left|\frac{z_{i, j-1}^{0}-z_{i j}^{0}}{\tau / m}\right| \leqslant M \quad\binom{i=1, \cdots, \ldots, n}{i=1, \ldots, m} \tag{3.2}
\end{equation*}
$$

We shall determine the initial functions $x_{i}(t)\left(t_{0}-\tau \leqslant t \leqslant t_{0}\right)$ for the system (2.1) by setting them equal to $z_{1 j} 0$ at the points $t_{0}-j \tau / m$, and making them linear between these points. By (3.1), when $t \geqslant t_{0}$, the components of the solution $x_{1}(t)$ of the system (2.1) satisfy a Lipschitz condition with the constant $\left(L_{1}+L_{2}\right)_{B \delta}$; therefore, when $t \geqslant t_{0}-\tau$ the functions $x_{1}(t)$ satisfy the Lipschitz condition with the constant

$$
K_{1}=\max \left[M,\left(L_{1}+L_{2}\right) B \delta\right]
$$

From the inequalities (2.15) and (2.18) we now obtain

$$
\begin{gather*}
\sum_{i=1}^{n}\left|z_{i j}(t)-x_{i}\left(t-j \frac{\tau}{m}\right)\right| \leqslant \frac{4 n K_{1} \tau}{\left(L_{1}+L_{2}\right) \sqrt{m}}\left(L_{2} e^{n\left(L_{1}+L_{2}\right)\left(t-t_{0}\right)}+L_{1}\right) \quad \text { for } t \geqslant t_{11} \\
(j=0, \ldots, m) \tag{3.3}
\end{gather*}
$$

Next, let

$$
\sum_{i=1}^{n}\left|z_{i j}{ }^{\circ}\right|<\frac{\varepsilon}{2 B \exp \left[n\left(L_{1}+L_{2}\right)(1+\beta) \tau\right]}
$$

where ε is a sufficiently small positive number. Suppose that $T=a^{-1} \ln 4 B$ and that m is so large that

$$
\begin{gathered}
\frac{4 n C \tau}{\left(L_{1}+L_{2}\right) \sqrt{m}}\left(L_{2} e^{n\left(L_{1}+L_{2}\right)(T+\tau(2+\beta))}+L_{1}\right)<1 / 4 \\
C=\max \left[\left(L_{1}+L_{2}\right) B, C_{\beta}+L_{1}+L_{2}\right]
\end{gathered}
$$

$$
\begin{gathered}
\sum_{i=1}^{n}\left|z_{i j}(t)\right| \leqslant \frac{\varepsilon}{2 B} \text { on the interval }\left[t_{0}, t_{0}+\tau(1+\beta)\right] \\
\sum_{i=1}^{n}\left|z_{i j}(t)\right| \leqslant \varepsilon \text { on the interval }\left[t_{0}+\tau(1+\beta), t_{0}+T+\tau(3+2 \beta)\right] \\
\sum_{i=1}^{n}\left|z_{i j}(t)\right| \leqslant \frac{\varepsilon}{4 B} \quad \text { on the interval }\left[t_{0}+T+\tau(2+\beta), t_{0}+T+\tau(3+2 \beta)\right]
\end{gathered}
$$

The first system of inequalities can be obtained directly from (2.4). Because of (2.11)

$$
\left|\frac{z_{i, j-1}-z_{i j}}{\tau / m}\right| \leqslant \frac{\varepsilon}{2 B}\left(C_{\beta}+L_{1}+L_{2}\right) \quad \text { for } t=t_{0}+(1+\beta) \tau
$$

If we determine the initial functions for the system (2.1) as above in the derivation of the inequality (3.3) but for the initial instant $t_{0}+(1+\beta)_{r}$, then, if $t \in\left[t_{0}+\tau(1+\beta), t_{0}+T+\tau(3+2 \beta)\right]$ we obtain $\sum_{i=1}^{n}\left|z_{i j}(t)-x_{i}\left(t-j \frac{\tau}{m}\right)\right| \leqslant \frac{\varepsilon}{2 B} \frac{4 n C \tau}{\left(L_{1}+L_{2}\right)^{\sqrt{2}} m}\left(L_{2} \exp ^{\left[n\left(L_{1}+L_{2}\right)\left(l-t_{0}-(1+\beta)\right)\right]}+L_{1}\right) \leqslant \frac{\boldsymbol{e}}{8 B}$

On the interval $\left[t_{0}+\tau(1+\beta), t_{0}+T+\tau(3+2 \beta]\right.$ we now have

$$
\begin{equation*}
\sum_{i=1}^{n}\left|z_{i j}(t)\right| \leqslant \sum_{i=1}^{n}\left|x_{i}\left(t-j \frac{\tau}{m}\right)\right|+\frac{\varepsilon}{8 B} \quad(j=0, \ldots, m): \tag{3.4}
\end{equation*}
$$

The first term on the right-hand side of (3.4) does not exceed $\varepsilon / 2$ when $t \geqslant t_{0}+\tau(1+\beta)$, because of (3.1); it will not exceed ϵ / δ_{B} when $t \geqslant t_{0}+T+\tau(2+\beta)$, because of the choice of T. This implies the validity of the statement made in regard to the behavior of the quantity $\left|z_{1 j}(t)\right|+\ldots+\left|z_{n j}(t)\right|$.

Again let us determine the initial functions for the system (2.1) by means of the values of $z_{1},(t)$ when

$$
t \in\left[t_{0}+T+\tau(2+2 \beta), t_{0}+T+\tau(3+2 \beta)\right]
$$

By the same method we obtain

$$
\begin{array}{ll}
\sum_{i=1}^{n}\left|z_{i j}(t)\right| \leqslant \frac{e}{2} & \text { for } t \in\left[t_{0}+T+\tau(3+2 \beta), t_{0}+2 T+\tau(5+3 \beta)\right] \\
\sum_{i=1}^{n}\left|z_{i j}(t)\right| \leqslant \frac{e}{8 B} & \text { for } t \in\left[t_{0}+2 T+\tau(4+2 \beta), t_{0}+2 T+\tau(5+3 \beta)\right]
\end{array}
$$

Repeating such steps (of time-length $T+\tau(2+\beta)$) we arrive at the conclusion that on the interval
$\left[t_{0}+k T+\tau(2 k+1+(k+1) \beta), t_{0}+(k+1) T+\tau(2 k+3+(k+2) \beta)\right]$ the following inequalities $(f=0, l, \ldots, m)$ are valid:

$$
\sum_{i=1}^{n}\left|z_{i j}(t)\right|<\frac{\varepsilon}{2^{k}}, \quad \text { if } \quad \sum_{i=1}^{n}\left|z_{i j}\left(t_{0}\right)\right|<\frac{e}{2 B \exp \left[n\left(L_{1}+L_{2}\right)(1+\beta) \tau\right]}
$$

From this follows the conclusion of the theorem on the uniform asymptotic stability of the trivial solution of the system (2.3).

Not e 3.1. From the proof of the theorem it is not difficult to establish that there exist constants $B_{1} \geqslant 1, a_{1}>0$ which are the same for all large enough m, and which are such that the inequality

$$
\sum_{i=1}^{n}\left|z_{i j}\left(t_{0}\right)\right|<\delta \quad \text { implies } \quad \sum_{i=1}^{n} \mid z_{i j}(t)<B_{1} \delta e^{-\alpha_{1}\left(t-t_{0}\right)} \quad\left(j=0, \ldots, m, t \geqslant t_{0}\right)
$$

Theorem 3.2. Suppose that the trivial solution of the system (2.3) is uniformly asymptotically stable, and that there exist constants $\alpha_{1}>0, B_{1} \geqslant 1$ such that for all sufficiently small 6 the inequality

$$
\left|z_{1 j}\left(t_{0}\right)\right|+\ldots+\left|z_{n j}\left(t_{0}\right)\right|<\delta \quad(j=0, \ldots, m)
$$

implies the inequality

$$
\left|z_{1 j}\left(t_{0}\right)\right|+\ldots+\left|z_{n j}\left(t_{0}\right)\right|<B_{1} \delta e^{-\alpha_{1}\left(t-t_{0}\right)} \quad\left(j=0, \ldots, m ; t \geqslant t_{0}\right)
$$

Then the trivial solution of the system (2.1) will also be untformly asymptotically stable if m is larger than some quantity depending on a_{1}, B_{1}, n, τ, L_{1} and L_{2}.

Proof. . Suppose that the initial functions for the system (2.1) satisfy the inequality

$$
\sum_{i=1}^{n}\left|x_{i}(t)\right|<\frac{\varepsilon}{2 B \exp \left[n\left(L_{1}+L_{3}\right) \tau\right]} \quad\left(t_{0}^{\prime}-\tau \leqslant t \leqslant t_{0}\right)
$$

Here, $\varepsilon>0$ is an arbitrary smali positive number. Then, [3]

$$
\sum_{i=1}^{n}\left|x_{i}(t)\right|<\frac{\varepsilon}{2 B} \quad \text { for } t_{0}-\tau \leqslant t \leqslant t_{0}+\tau
$$

Let us determine the initial conditions for the system (2.3) at the instant $t_{0}+\tau$ by setting $z_{i j}\left(t_{0}+\tau\right)=x_{i}\left(t_{0}+\tau-j \tau / m\right)$. Suppose that

$$
N_{0}(t)=\max _{E} \sum_{i=1}^{n}\left|z_{i 0}(\xi)-x_{i}(\xi)\right| \quad\left(t_{0}+\tau \leqslant \xi \leqslant t\right)
$$

Obviously, $N_{0}\left(t_{0}+\tau\right)=0$; let us define $N_{0}(t)=0$ when $t<t_{0}+r$. Let

$$
F(t)=\max _{\xi} \sum_{i=1}^{n}\left|x_{i}(\xi)\right| \quad\left(t_{0}-\tau \leqslant \xi \leqslant t\right)
$$

We have $F(t)<\varepsilon / 2 B_{1}$ when $t_{0}-\tau \leqslant t \leqslant t_{0}+\tau$. Then
$\sum_{i=1}^{n}\left|x_{i}(t)\right| \leqslant \sum_{i=1}^{n}\left|z_{i 0}(t)\right|+\sum_{i=1}^{n}\left|z_{i 0}(t)-x_{i}(t)\right| \leqslant B_{1} \frac{\varepsilon}{2 B_{1}}+N_{0}(t) \quad$ for $t>t_{0}+\tau$
Thus, $F(t) \leqslant 1 / 2 \varepsilon+N_{0}(t)$ when $t \geqslant t_{0}-\tau$.
When $t \geqslant t_{0}$ the functions $x_{1}(t)$ have continuous first derivatives $x_{i}^{*}(t)=X_{i}(t, x(t), x(t-\tau))$. Hereby the following inequality holds, $\left|x_{i}^{*}(t)\right| \leqslant\left(L_{1}+L_{2}\right) F(t)(i=1, \ldots, n) . \quad$ By replacing the coefficients 4 by 2 which is permissible in view of the continuous differen-
tiability of $x_{1}(t)$, we obtain from (2.18) the next inequality

$$
\begin{aligned}
N_{0}(t) & \leqslant n \int_{t_{0}+:}^{t}\left[\left(L_{1}+L_{2}\right) N_{0}(\xi)+\frac{2 n\left(L_{1}+L_{2}\right)\left(\varepsilon / 2+N_{0}(\xi)\right) L_{2} \tau}{m^{1 / 2}}\right] d \xi= \\
& =n \int_{t_{0}+\tau}^{t}\left[\left(L_{1}+L_{2}\right)\left(1+\frac{2 n \tau L_{2}}{m^{1 / 2}}\right) N_{0}(\xi)+\frac{n \varepsilon L_{2}\left(L_{1}+L_{2}\right) \tau}{m^{1 / 2}}\right] d \xi
\end{aligned}
$$

Hence,
$N_{0}(t) \leqslant \frac{n \varepsilon L_{2} \tau}{m^{1 / 2}+2 n \tau L_{2}}\left[\exp \left[n\left(L_{1}+L_{2}\right)\left(1+\frac{2 n \tau L_{2}}{\sqrt{m}}\right)\left(t-t_{0}-\tau\right)\right]-1\right]$
Let $T=\alpha_{1}^{-1} \ln 4 B_{1}$ and m be so large that

$$
\frac{n L_{2} \tau}{m^{1}=+2 n \tau L_{2}} \exp \left[n\left(L_{1}+L_{2}\right)\left(1+\frac{2 n \tau L_{2}}{\sqrt{m}}\right)(T+2 \tau)\right]-1<\frac{1}{8 B_{1}}
$$

Then

$$
\sum_{i=1}^{n} 1
$$

$$
\begin{aligned}
& \sum_{i=1}^{n}\left|x_{i}(t)\right| \leqslant \frac{\varepsilon}{2}+N_{0}(t) \leqslant \frac{\varepsilon}{2}+\frac{\varepsilon}{8 B_{1}}<\varepsilon \text { on the interval }\left[t_{0}+\tau, t_{0}+T+3 \tau\right] \\
& \left|x_{i}(t)\right| \leqslant B_{1} \frac{\varepsilon}{2 B_{1}} \exp \left[-\alpha_{1}\left(t-t_{0}-\tau\right)\right]+\frac{\varepsilon}{8 B_{1}}<\frac{\varepsilon}{4 B_{1}}\left[t_{0}+T+\tau, t_{0}+T+3 \tau\right]
\end{aligned}
$$

The proof is completed the same way as above,
Note 3.2 . If the systems (2.3), which approximate (2.1), satisfy the conditions of Theorem 3.2 for m large enough, while the constants B_{1} and α_{1} do not depend on m, then the trivial solution of the system (2.1), by Theorem 3.2, is uniformly asymptotically stable. From the remark in regard to Theorem 3.1 it follows, furthermore, that the stability of the thivial solution of the system with lag satisfying the conditions of Theorem 3.1, can always be determined with the aid of a sufficiently exact estimate of the constants B_{1} and α_{1} of the approximating system of ordinary differential equations for large enough m by means of Theorem 3.2

BIBLIOGRAPHY

1. Krasovski1, N.N., Nekotorye zadachi teoril ustoichivosti dvizhenila
(Some Problems of the Theory of Stability of Motion). Fizmatgiz,1959.
2. Fel'dbaum, A.A., Elektricheskie sistemy avtomaticheskogo regulirovaniia (Electric Systems of Automatic Control). Oborongiz, 1957.
3. Repin, Iu.M., Ob ustoichivosti reshenil uravnenii s zapazdyvaiushohim argumentom (On the stability of solutions of equations with lag arguments). PMM, Vol.21, NI 2, 1957.

Translated by H.P.T.

