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Considered is the questlion of the approximate replacement of a system of
differential equations with a lag argument by a system of ordinary different-
lal equatlions. The estimates obtalned in this work show that such a replace-
ment can be realized, with any degree of accuracy, if one makes the order of
the system of ordinary differential equations high enough. Some theorems on
the stablllity of the trivilal solutions of the considered systems are estab-
lished.

1. Approximation of the lag element by a system of ordinary differentisl
equations. We shall describe the state of the lag element [1] at any instant
t by a function x, (o) defined on the interval [— r, O], where « > O 1is
the constant delay time. The state of the element willl be determined at any
instanv ¢ (t, < ¢ <({,) if one gives its initial state Z, (0) and the input
function x(t) for 2,<t<{ . In this case x, (o) = x(¢t + g), whereby,
here and in the sequel, the function x{t¢) willl be assumed to have been con-
tinued over the interva. [¢,— 7, y,] by means of the function z,, (0), in

such & way that x (t) = &, (t — ¢,) when iy — T < ¢t < I,

The output function y(¢) of the lag element is defined as x, (— 1), and,
hence, can be obtained from the continued input function by the equation
y(t) =x(t — 1) . We note that even though the values of x(¢) on the inter-
val (¢t,— 1, ¢,] do not influence the output function (¢ <{ f,), nevertheless
these values are needed for the determination of the state of the lag element
when ¢, — 1T <1<

In what follows, the continued input function x(t) will be assumed to be

continuous on the interval [¢,— 7, ¢,] .

Along with the lag element, let us conslder an aperiodic link which 1s
described by the equation «+z°+ z = x(¢) , where the time constant ¢ coin-
cides with the delay time of the lag element, while x(¢) is the input func-
tion of the lag element when ¢ > I,
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In order to determine some correspondence between the initial states of
the lag element and the aperiodic link, we set

z () = o, (— ) =y ()

Let us try to evaluate the difference e(t) = g{t) — y(¢) between the
output functlons of the aperiodic 1link and of the lag element. We note that
e(t,) = 0 . Let us suppose that when t, — T < ¢ < !y, the function x(t)
has a contlinuous derivative. Then

) =7 —y @)=t z@—z2@t) — 2" (t—r)=—1"e () +o @)
p@)=1tllz(@)—2z@t—T1)]—2 (t — 1)

If x*(¢) satisfles a Lipschitz condition with a constant x,, then
|p ()| < K, 7. 1Ir, however, x"(¢) exists, and if |7 (2)| << M, then
| ()| << Y/sMyT. It is not difficult to see that |e (t)]<C K, 1? 1In the
first case, while [8 (t)|<1/2M21:2 in the second case.

Let us consider a chain of m lag elements [2], with a constant delay
time 1t/m , which are siccessively connected (i.e they are connected so that
the Input function of each element 1s the output function of the immediately
preceding element). We shall construct the initial states of the chain ele-
ments from the 1lnitlal state of the above consldered lag element by means of
the rule

o () = u(p— US0T) (<o j= 1, m) A1)

m

If one takes for the input function x(z) of the first element of the
chaln the input function of the lag element considered above, then the rela-
tion (1.1) will be fulfilled at any instant ¢ , and the output functions
of the chain elements wlll be determined by Equations

n)=z¢t—rv/m
Y2O) =y, ¢ —t/m)=z(—2v/m) (1.2)

Yn (@) = Yma @ — v/ m) =2 (@ — 1) =y ()

Here x(t) 1s the continued input function of the lag element; y(¢) 1s
1ts output function. Let us construct the chaln of successively connected
aperlodic links descrlbed by a system of ordinary differential equations
with the iplitlal conditions

il =2(), 2z () =y () =z (e — T/M) = 2y,(— T/ m)
Tmtzy + 2, = z; (), zy (Bo) = Ya (b)) = 2 (g — 27/ m) = 2y, (— T/ M)
e et e e e e e (1.3)

2y, 4 2 = 2 (£),

o () = Ym (La) = @ (o — T) = Ty, (— ¥/ m)

The evaluation of the differences &; (t) = z; (t) — ¥; (¢) G=1,..., m),
and also certain propertles of the system (1.3) will be gilven below.
By the estimate derived earlier, we have |& (f) |<<A(t/m), where 4

coincldes with x, or with M,/z , depending on the hypotheses relative to
x(t) . 'The input of the second lag element is y, (¢), while the input of
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the second aperiodic link 1s z () = y; () 4+ & (¢). The function ,(t¢) can be
represented in the form of the sum zu])(t) + 2'?(), where 2V (1) and zﬁ(”(l)
are solutlons of the problems 2

(t/m) 2V 4 2=y, (0,22 (1) = y, (t)
(t/ m) zzm‘ -+ 52(2' =g, (1) 22(2) (t) =0

Now, we obtain easily

lea ()] =122 () ~ 2@ I<]| 2D —va 1+ 122 ()| <
SA@/mpPE+ Afv/m)P =24 (v [ m)?

Continulng in the same manner, we get
leg; (< jd (v /m)?

By replacing f on the right-hand side of the inequality by l1lts largest
value, we obtain
le; (< Am™1 G=1....m 1.9

From this it follows that g,{¢) = y(¢t) uniformly on the interval [¢,,¢,]
as m - @

We note the following property of the system (1.3) : 1f [z () i<e G=1,..., m)
and if |r ()| <& when fKt ¢, then |z, ()| & when ¢, <t G=1,..., m).

Let us weaken the requirements on x(z) by assuming that it satisfles the
Lipschitz conditlon with a constant K, 7ior that it may have a first deriva-
tive bounded by a constant 4, ). We consider the smoothed input function

t+h

LN
o=\ zoa G-1<i<n

t

(the function x(¢) on the interval [¢,, t,+ h] 1s continued so as to be
continuous and constant).

Its first derivative V" ={[z (t+ B)—z ()l/h satisfies the Lipschitz
condition with the constant 2¢,/h (or else 1t has a derivative bounded by
the constant 2/41/?1).

Let us evaluate the function 2@ () = z () — #V (). It x(t) satisfies the
Lipschitz condition,then
1 H:h
s -3 \ s@&| =120 —sO1  e<o<idn
t
Thus, in this case |z & ()< Kih.
If x(¢t) has a bounded first derivative, then
t+h t-+h
. 1 . I Mk
129 @ ==z 0 -5 S [zW+E—0T @ENE<;T | E—0) Mdg=—5~
t t

Because of the linearity of the systems (1.2) and (1.3), their output
runctions y(t) and g, (Z) which corresponds to the continued input function
z () = V() + =¥, will be sums of the output functions of these systems
and will correspond to the continued functions U (5 and 2% ().

Hence,

1% 1) 1=

[ 2 ) —y O] =1 2,0 () + 2@ () — ¥V () — ¥y B[ <
<12, Y0 — ¥V O+ 1 2P @ 1+ 1P @)

It 1s obvious that |y® (8)]=! :('m (t — I Kk (or W, n/2, respectively).
The same inequality holds for |z, 2 (/)| because of the mentiorl\?d prop(elfty of
the chain of the links, For an estimate of the quantity |z,V (5 — 'V (1)|
one can use the inequality (1.4} because 2 (f) is a sufficféntly smooth
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function. Hence,
12, () —y () | < 2K,7% [ hm + 2K,R (correspondingly, M, / km 4 M h)
If we set h = r/m , then we obtain the following result.

Theorem 1.1 . If the continued input function 1s the same for
the lag element and for the corresonding chain of the m aperiodic links
and if it satisfies the Lipschitz condition with the constant k, (or has a
first derivative bounded by y,) then the output function of the lag element
and of the chaln of aperiodic links satisfles the inequality

[2mt) —y (&) | <4K1/Vm  or 2M; t/V'm (1.5)
Note 1.1 . Obviously, the following inequalities are true:
[2;(8) — y; O < 4Kyt /Vm (or 2Mt/Vm) G=14..,m—1) (16
Note 1.2 . It 1s equally easy to prove the convergence of z.(t)

to y(t) a8 m - = for an input function x(¢) which fulfills only the
requirement of continuity.

2. Approximation of & system with a lag argument by means of an ordinary
system of differential equations. Let us consider a system of differential
equations with one constant lag

drifdt = X; (¢, 21 (@), -« o, T (t), 2, (¢ — T), .« ., Zp (E — 7))
i=1,...,n)
For the sake of brevity, we shall write the last equation in the vector
by
orm dz/di = X (¢, z, = (t — 7)) (2.1)
Let functlons X,(t,x,y) be defined and continuous in all arguments such
that
I:"ll"'---+lxn|<H1Iyll+"-+lyﬂl<H for t>= A4
Furthermore, it is assumed that X; (£, 0, 0) = 0 and that the functions

x,(t,x,y) satisfy a Lipschitz condition in the argument x,y (uniformly
with respect to ¢ )

| X (6, 2, y) — X (8, 2° y°) | <L1§‘l e — o’ |+

n
+ szE lyk—_ ykol for t > A4 (22)
=1

Replacing the system's lag elements by chains of m aperiodic links, we
obtaln an approximating system of ordinary differential equatlions of order

nim + 1)
S Xt 20 2y 5= (e ) (2.3)
dz m dz m .
T = G — ) (=04

Let us establish some properties of the solutions of the system (2.3)
which are analogous to the properties of the solutions of the system (2.1).
It is not difflicult to establish [3] that the posslble rate of increase of
the solutions of the system (2.1) is determined by the constants of the
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Lipschitz condition of the functions X, (t,x,y) . We note that this remains
true uniformly with respect to m also for the system (2.3) in spite of the
fact that the Lipschitz constants of the remaining right-hand side parts of
(2.3) (for 4 =1,..., m ) 1ncrease with m as m/7 .

Suppose that the initial conditlons for the system (2.3) satisfy the
inequalities n
_}J; z2;° | <8, G=0,...,m)
Furthermore, let et

M (t) = max 8, Elzm ® ] for ty<E <t
From the vector equation dz, / dt =m(z,— 2 )/ T We obtain
t

° —_ t
2 (1) = 2 oxp — 0 4 T {2 (1) exp B g
to

Hence,
t

lez, | <8exp ==l 4 ™ {ar ey exp 2D e

< M(t) [CXPM+L’LKGXP’EL€:‘ld5] =M (1)

T T T

Continuing in this manner, we get

n n

Dz @OI<MO, ... lelm(t < M)

1i=1

In view of the first equation of (2.3) we have
t

20 () =2+ Xi (B 20 (8), 2 () A5 (=10
te
Therefore,

t n
Elzw(t)l zlzm°|+82xxug,zo(a),zm(andx

to i=1

M () d§

P B R

t n n
<O+ n{[Ls Bl awo )|+ Lo 2 em (D] ]dE <8 + 2 (Ly + L)

t,

From this, one can easily [3] obtain the inequality
lel, OI<M@O<8explnL+L)(t—1)] ¢=0....m (2.4

For the solution of the system (2.1), the following property holds: 1if
a certain set of initial functions and their corresponding solutions x,(t)
(¢t = 1,..., n) are bounded by some number & when (I — T <!t {+ 1,
then the set x,(t) is bounded by the number 45 (where 4 1s some constant)
when t, <ttt + T

An analogous property holds uniformly in m also for the system (2.3),
where the role of the derivatlves is played by the dilvided differences
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%4, 41 %ij
Tx/m

evaluated for t =t + (1 +8) 1T @3>0
Ineed, let

t=1,...,nj=1,...,m)

Tlzg@1<8  for 64 <t<t+ U+HT (=01,...,m
=1

Because of the system (2.3), the following equations are true:

z‘ _......Zi- - . »
-1 _J=zﬁ (;:‘!,.”,n;}?—i,u-rm}
Tlm

Let us express zy (i=14,..,n7=1...,m in the form of the sum
‘t")‘?"g@)' where Z{Sﬂ and 3§¥l satisfy the systems of equations with the
initial*conditions 4

2.5)
T . A {9) . (2 I B
g 5 = ny, 2P0 =2 T D =0, 5V () =5~ 5
T 0 L (s 9 .. °
i+ =50, 2 ) =2y ma + ad =2, 2 () = 5, — %0

R A N P N I P R I I R I R N R S A R S N BN N .

T o T 4 s
— gl g p @ g ) gy gl — 28 B = 7@ B ) = 2,0 — 2z

moim i,m-1° ! meim m~-1' Zim
Let us introduce the notation z{-m = Uy, z;-m = vy Then uy; and gy
will satisfy the systems of equations with the initial conditions (2.6)
2o — Zi
T, ., L . T . g %
;uil + uil - ziﬁ’ ui] (tﬂ) = 0! ; ”iz ‘;' vil == 0, ”:‘1 {t‘) = m.__lt 7 r_n...—
- = = 0; L = 2y — %y
m ¥ Y= Ui Uiy (ty) = 0; i ¥ Vg =Yy Ul = poy

T . T . z ° o
m i T Ui = Ul Uy (8) = 0 m Vim ¥ Vi =V m1s Vylty) = —

Since 2= X;(t 20 (1), 2y (1)) we get
s IS L+ L) b for 6<t<tHdUPPHT

Because of the system (2.6) we lave
{uOIST+ LIS (=L onj=14..om G(SiSK+tl+F) @D

From the system (2.6) we find 2.8)

- Vi ) m(E—t) vy (o} (m (€ — 1)1 (1)
oy ) = (Vij ) ¥ 2=+ ... + PR )exP .

Hence we obtain (i=1,...,n; f=1...,n 2.9
Lot A+ IS ZE(1bma+ P+, M'_"_ﬂi‘_ﬂllﬁ) e-mit-£)

(m — 1)l

The expression (1+mU3+P+ ...+ Im(A+BI™ T/ n— D)  can ve esti-
mated from above by the sum of an Infinite decreasing geometric progression
with first term [m (1 + B)™1/(m — 1)l and denominator 1/(1 + g) . There-

fore, -
1
Lol + T+ M < g‘%‘HL L)
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Using Stirling's formula, we obtain finally
14
|vl,(ta—r’r(1+13))|<‘6 V’”_( ﬁ)<<scp ( =1, .. ) (2.10)
t V2 1 cam
Combining (2.7) and (2.10) we obtain an inequality which holds uniformly
in m

%i,5-1 —
T/ m

cam

i=1,...,
11 <8 (Cp + Ly +Ly) (;=1,_ "), t—t+UvHT @)

Let us next consider the question of the nearness of the solution of the
system (2.1) to that of (2.3), assuming that the initial conditionswz,/ of
the system (2.3) are constructed from the initial conditions of the system m
(2.1) in the following way:

i (t) = 25" = Zi(to — jv/m)  y=1,...,0[=0,...,m) (2.12)

Let us suppose that the functions Ii (g) (to—T<E ) satisfy the Lip-
schitz condition with the constant f, (¢) , the same for all functions
(¢t =1,...,n).

n
L .
“ N@=maxdm®-—a@-/m G<E<o
Let us represent Zjj (i=1,..,nj=1,...,m) in the form of the sum
(1)+ ( where Hﬁl) and z‘?) satisfy the systems of equations with the

1uitial %dnditions

(T / nl) zi;fl) + z‘i;l) = x; (t)’ (1) (t ) — 'r = x; (to —_—T / m)
(v/m) 2" 4 20 = 2,1, Ziél) {to) = 25, = x;(tg — 21/ m)

(v/m) 70 4 gD = 2,0 20 (1) = 7, = =z, (tg — mT/ m)
(v / m) zum + 2 =y (t) — (), P () =0
(c/m) 2+ 5 =20, 2P (1) =0 (2.13)
(v / m) zi;}?) -+ z{g) = zif?rl—l? (2) (2) = O
From (2.13), (1.2), (1.5) and (1.6) 1t follows that (2.14)
. AK () T i=1,...
2P0 — &t —jo/m)I< Vli 2 L2 1) 1 < N (0 (;= - m”)
From (2.1%) we obtain Ak
n HT i
N; (1) < No (1) + —V‘—ﬁ—— G=1,...,m) (2.15)

In view of (2.1) and (2.3) we have for «;=12;(!) and z;j= z;;(t) the fol-
lowing equation
t

Xz @z G — ) dh 5y = 55 (1) 4 | i B 20 B, 2, () 2

to

[LNo (8) + Ly Ny ()1 dE <

H

¢ 4nK L
n\ [(L,+L.)No(§)+—'i%i—:—”]d§
te

zy = zi(ty) ¥
then

P St

I
e

| Zi (8) — 24 () | <"

-
~
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and hence,

No@ <n [ (Lo L) No ® + (2.16)

4nK, (§) LzT:| dt
ty

m"/ ]

3. Preservation of stability in the passage to the spproximating system
and back. Let us examine the systems (2.1) and (2.3).

Theorenmn 3.1 . Suppose that the trivial solution of the system
(2.1) is uniformly asymptotically stable, and that there exist constants
o> 0, B >1 such that for all sufficlently small 6 the inequality

2@+ F 2z (@< o—r<t<)
implies the inequality
[z, () |+ ...+ | zn (2) | < Bbeat-t0 (t>t) (3.1)

Then for m large enough, the trivial solution of the system (2.3) 1s
uniformly asymptotically stable.

Proof . Let us assume that the Initial data for the system (2.3)
satisfy the conditions

n ° L]
° . 2q, -1 %5 i =1,.2 ., o«
31"’”' <8 (=0,...,m) “rl/m —|<M (il:l,.:.,nm ) (3.2)

We shall determine the initial functions &; (t) (to—T <<t < ly) for the sys-
tem (2.1) by setting them equal to 2z, ,° at the polnts g,— Jr/m , and making
them linear between these points. By (3.1), when ¢ >z {,, the components of
the solution x,(¢) of the system (2.1) satlsfy a Lipschitz condition with
the constant (1,+ L,)}B6 ; therefore, when ¢{ > {, — T the functions x, (¢)
satisfy the Lipschitz condition wilth the constant

K, = max [M, (I + L,) BS].

From the inequalities (2.15) and (2.18) we now obtain

< v Kyt
s —zi(t— )| — 20K (Len el =) L L)) for t3>1,
Slaor—m(i— i) |< girsya Fla) o
(=0, ...,m) (3.3)

Next, let

n
° -3
22| < e G Ly AT

i=]
where ¢ 1s a sufficlently small positive number. Suppose that T= o 'lnkp
and that m 1s so large that
4nCr (L
Lt L) Vm °
C= max [(Li-+-Ls) B, Cg+Li+L,]

We shall establlish the inequalities

en (LitLa) (T+x @+B) - [y < Y/,
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n
€
2‘ zi; (1) 1 <*"2B on the interval [fo, o+t + B)]
5
n

Z‘, |2i;(t)| <& on the interval [to4t(1-B), to+ T+ 7(3 4 28)]
i=1
n
&
leij(t)[ <Z§ on the interval [to+T +7124+B), to+ T+ T(3 4 23)]
i=1
The first system of inequalities can be obtained directly from (2.4).
Because of (2.11)

%3, -1 %ij
T/m

<5 (Cs+ L+ L) for t=to+ (1 +B)7

If we determine the initial functions for the system (2.1) as above in
the derivation of the inequality (3.3) but for the initial instant ¢ +(1+g)r,
then, if t& [ty -+t + B), to+ T + © (3 + 28)] we obtain

'z it & & 4nCr [0 (LitLy) (U-te-s (1480) L L) < o
21 z5)—m(t—] )| <5 T (Leexplt (i (o= @ 4 L) < g
On the interval [ty 4 1 (1 +PB), t,+ T + 1 (3 + 201 we now have
Etzij(t)‘< Z‘-’C1<t~]%>\+§% (=0,...,my (34)

=1 i=1

The first term on the right-hand side of (3.4%) does not exceed ¢/2
when t > t, + © (1 + B), bvecause of (3.1); it will not exceed ¢/8p when
t>t,+T -+ t(2+ B), because of the cholce of T . This implies the
validity of the statement made in regard to the behavior of the quantity

26 @]+ .o+ [z (0) |-

Again let uc determine the initial functlons for the system (2.1) by means
of the values of z,,(t) when

telty+T+1@2+ 28,6+ T+ 13+ 28

By the same method we obtain

Mz <5 for tE Mo+ T+ 7@ +22), to+27 +1(5+38)]
=1

21250 |<gg  for tE[to+2T +T(4+ ), to+ 2T +7(5+3B)

i=1

Repeating such steps (of time-length 7 + (2 + g)) we arrive at the con-
clusion that on the interval

[ty + KT + v 2k 41+ (k+1)B), to+ (k +1) T + © (2 + 3 + (k+2)B)]

the following inequalities (y = 0,1,...,m) are valid:

5 e - e
i_él‘lzi:i(t)|<£;?a if Z‘zij(to)l<2Bexp[n(L1+L2)(1+B)1:]

i=1
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From this follows the conclusion of the theorem on the uniform asymptotic
stability of the trivial solutlon of the system (2.3).

Note 3.1 . From the proof of the theorem it is not difficult to
establish that there exist constants B, > 1, @, > 0 which are the same for
all large enough m , and which are such that the lnequality

2 | 2;(t) | <8 1implies E L2 () < BBe (W (G=0,...,mt=1t)
ie=)
Theorem 3.2 . Suppose that the trivisl solution of the system
(2.3) 1s uniformly asymptotically stable, and that there exlst constants
a; > 0, B, > 1 such that for all sufficlently small & the inequality

|25 (G} |+ - <« | 2aj (B0)] << 8 (G=0,....,m)
implies the inequality

| 215 (t) |+ - -« ] Znj (fo) | << BB -t} G=0,....,m; t>t)

Then the trivial solution of the system {2.1) will also be uniformly
asymptotically stable if m 1s larger than some quantity depending on g,
Bisn, 7, L, and L,.

Proof. . Suppose that the initial functions for the system (2.1)
satisfy the inequality

n

Eixi(t)l<23exp[n&1+&)'ﬂ (tﬁ’f'7<t<tﬂ)

=],

Here, ¢ > O is an arbitrary small positive number. Then, [3]

Ala@| <z  for h—r<t<htT

i=1
Let us determine the initial conditions for the system (2.3) at the instant
tot v by setting Zi (fy + 1) = i ({ + T — jt/ m). Suppose that

No ()= maxg Nz ® = m @] tot+v<e<y

Obviously, N,(to+ =)= O ; 1let us define N,(t)=0 when ¢ < t,+ 7 .
Let

F (t)= max, 2 | z; () | to—r<EY
We have F(t)<8/231 when lh—T<<Ii{<to+1. Then

E’xi(t) 2[2,0(1) [+ Z[zw(t)th(t)i 3123 +No(t) fort>t+tx

=1 i==1
Thus, F (f) <Yy + No(f) when >0, — T.
when { > !, the functions x,(t) have contlnuous first derivatives
(1) = X; (¢, z (), = (t — 7)), Hereby the following inequality holds,

l x; OI<EF LY F ) (i=1,...,0). By replacing the coef=-
ficlents 4 by 2 which 1s permissib'le in view of the continuocus differen-
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tlability of wx,(t), we obtain from (2.18) the next inequality
t

No)<n \ [(La+ L) No(p) + 2t LA EI2E D EN B2 14y —

,nl/:
ty b

- S (L L) (14 258) Ny () - 222 E 2

e
to+T

Hence,

Ny () < 20 [exp [n (L + Ly (1 + 2% Je—to— T)] _1]

m'r 4 onTlL, V;l
Let T = a;7Un4B,; and m be so large that

an'f

m'e 4-2ntL,
Then

exp [n Ly + L) (14 BN 2~c)] 1<

n
2|Ii(t)l<%+No(t)<%+§%l<e on the interval [t + T, to+ T 4 37}
i=1

2 lfi(t)f<312%19XP [“al(t*tO_r)]+z;l?l<£i [to+ T+, to+ T 4+ 31]

=1
The proof is completed the same way as above,

Note 3.2. If the systems(2.3), which approximate (2,1), satisfy
the conditions of Theorem 3.2 for m large enough, while the constants B
and q, do not depend on m , then the trivial solution of the system (2.15,
by Theorem 3.2, is uniformly asymptotically stable, From the remark in
regard to Theorem 3.1 it follows, furthermore, that the stability of the
thivial solution of the system with lag satisfying the conditions of Theorem
3.1, can always be determined with the ald of a sufflciently exact estimate
of the constants 5, and o, of the approximating system of ordinary differ-
ential equations for large enough m by means of Theorem 3.2
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